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In [1] a class of exact solutions of the equations for the kinetic moments
of a monatomlic Maxwelllan gas are studied, when external forces are absent,
and the density p , the coefficlent of viscosity u , the pressure p , the
stresses P,, and ail the remalning moments of the distributlion function of
higher order .depend only on the time ¢*, whilst the components of macroscoplc
velocity, moreover, depend linearly on the Cartesian coordinates x, y and
2z . The fundamental and most simple solutions of thls class are the shear
solution, by which the accuracy of the well known Chapman-Enskog method [ 2]
and [5] of the relaxation kinetic equation [4] was studied, and also the
one-dimensional time-dampted sclution considered here. In this paper the
basic attention to the applicablility of the Chapman-Enskog method 1s glven.

Let the velocity vector V¥ of the gas be directed along the x-axis, and
also

V=c/@*+0), ¢ = const 1
Making use of the relation obtained in [1] for the stated class of flows,
we find that p=p(0) [+ 8, t=1t*/¢ 2)
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Here ¥ and R are characteristic values of the Mach and Reynolds num-
Bers. The equation of energy and the equation for p,, have, respectively,
the form

dp _ APy 3 _ _ln(@E*+0
5Pt 2y =0, W+4p+(7+?)pu—-0, n=REF9

Let us introduce the notation
MN=p/pQ), HM.=p./p or O (0)=p, 0 /p(0) {5)
The solution of the system {4) will have the form
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For small p and fixed values of 1Ii,,(0) we shall have

8 16 32 20
n=—5+ 38— B — 3B+ g h+ 0@
0
m—r=—381—2+0(@), A=1— o pll 0+ 0§

For any fixed values of ¢, 0,,(0) and g - O, from the relation (6)
with allowance for (7) we obtaln the zero order terms in the asymptotic
expansion of the exact solution for small 8

-

D=+  I,=—%8 @
which coincide with the solution of the problem in the approximations of
Euler and Navier-Stokes and do not depend upon 1,,

-r The solution of the problem
/ by the method of Chapman-Enskog
9 has the form

L = Yer
A\ 7 I (11 + 9" @
s N / ,=—Y06+7
\&\ v d where r coincides with the

\\\‘é\\ g expansion r, (Formula (7) );
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Fig. 1

In Fig. 1 the exact values of 7, are compared with the approximations
(r“) = @ + ”0/31[3‘)

Barnett's approximation is significantly more accurate than the Navier-
Stokes approximation, and agrees well with the exact solution even in the
region of divergence of the Chapman-Enskog method. By the same method as
in Section 36 of [2], where the shear flow is cosidered, it is easy to show
that the series for 1[I, obtained by this method converges at least when
B < (V10— 1) /6 and consequently the corresponding series for r 1in terms

B converges to r; .

The approximate solution (9) differs from the exact solution not only
that r 1s an approximate value for r1 , but differs also 1ln its structure.
If 4 =1, then B=0 and 0,,(0) =—(5+ r,)/2 . Only for such a value
of n,x(O) the solution by the’ Chapman Enskog method have the same structure
as the exact solution and the small values of g converges to it. Of course,
each approximation of this method is applicable only in a finite interval of
the value of ¢ , since when ¢ - » the approximate values of 1 can differ
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appreciably [rom ths exact values,

For arbitrary values of I,,(0) the solutioch by the Chapman-Enskog methc:i
has an asymptotic character, glving correctly only the zero order ceim. of
the solution with respect to 8 (5), since even in the first term of the v~

0 pansion of 4 with respect to B the ratio 0., (U)
”xa: occurs. It 1s necessary to remark that, in contract
to the Chapman-Enskog method, in the kinetic theory
. we assume a certaln arbltrariness in the initial
B=0.3 values of 7, = p,, + pb,; and the other moments of
higher order, but the degree of this arbitrariness
1s unknown, An essential limitation consists in the

2 n . positiveness of the distribution function and, ccn-
IzﬂU"’ sequently, of its even moments.
If, for example, Py, 0= Py 0) =— YD ), then,
\\\\‘ taking account ot the conditions Ty, >0
. and r,,> O, we have —1 < [,,{0) <« 2.
For the final answer to this question
it 1s necessary to find the distribution
function or the complete spectrum of 1its
/// moments.,
0 [ ! ! In the Chapman~Enskog method it is
7 2 t ki assumed that the fluctuation of the
initial values of the moments of the
distribution function of second and
higher oraer, dle out, and after a period of time
022 of order several relaxation times the state of the

-1 gas ceases to depend upon them. This assumption has
been subject to criticism; it 1s particularly easy
to show the falseness of thils assumption 1n the case
under consideration here.

Let us consider the case of large . Discarding

-2 the terms which die out rapidly with time (this pro-
cess of "dying out" is illustrated in Fig. 2), from
Fig. 2 Formulas (3) we obtaln

?¢5=—“0 (i), Pyy = pzzz—liﬁpxx’

which colncldes with the corresponding results of the Chapman-Enskog method.
From Formulas (6) we obtain

M/4 =13l Mo =— Y 6+ ry)

Accordingly, for large ¢ , small g and arbitrary I, (0) the Chapman-
Enskog method glves correctly the values of the ratiocs Ii/4 and {l,, and in-
correctly the absolute values of p and p,, (with the exclusion of the
case 4 = 1 , considered above).

The conclusions drawn above are valid also in the case of shear flow with
the exception of the circumstance that when 4 = 1 in the solutlon considered
here, the results of the calculations in the Barnett approximation are close
to exact ones in a considerably wider range of values of B than in the case
of shear flow. The relative success of the Chapman-Enskog method in the
problem of shear flow in [2] 1s explained by the fact that in this case those
terms of the equations of this method are identlcally equal to zero, the
presence of which, as 1s established in [ 2] and [5], throw doubt on the cor-
rectness of the Chapman-Enskog method. However, in the case consldered here
these terms are not zero.

The author expresses his acknowledgement to M.N. Kogan and A.A. Nikol'skil
for thelr interest in thils paper.
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