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In [l] a class of exact solutions of the equations for the kinetic moments 
of a monatomlc Maxwellian gas are studied, when external forces are absent, 
and the density p , the coefficient of viscosity Q , the pressure p , the 
stresses P,J and ail the remaining moments of the distribution function of 
higher order.depend only on the time t*, whilst the components of macroscopic 
velocity, moreover, depend linearly on the Cartesian coordinates X, u and 
2. The fundamental and most simple solutions of thls class are the shear 
solution, by which the accuracy of the well known Chapman-Enskog method [2] 
and (53 of the relaxation kinetic equation ['i] was studied, and also the 
one-dimensional time-dampted solution considered here. In this paper the 
basic attention to the applicability of the Chapman-~skog method is given. 

Let the velocity vector v of the gas be directed along the w-axis, and 
also 

V=rl(t*+c), c = const (1) 

Making use of the relation obtained in [1] for the stated class of flows, 
we find that 

P = P @) / (1 + t), t=t*fc (21 

&J P 

igB=&= (1 + ?)-(2+1’~‘, 

!J (0) 5 w 
P=------ CP (0) 3 R 

(3) 

Pgi, = - %Pw + b, (0) + ‘Iz& ml (1 f t)-(l+“fl’, P,+P$@+P,,=o 

Here M and Ei are characteristic values of the Mach and Reynolds num- 
bers. The equation of energy and the equation for pXX have, respectively, 
the form 

*+ 5p + 2p,,=o, 
dtl 

!$ +4p+ (7f $)p,=o, ?Q(t*3f? (4) 

Let us introduce the notation 

n = P/P(O)* n,=P,/P or nrz (01 = Pz (0) I P (0) 

The solution of the system (4) will have the form 

(5) 
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II = A (1 _t C)rl’s [I + B (1 + C)k], 
2 

A = ;;--;I- 
1 

5;fs+l-I,(O)], B=&-i 

l-I*.= -- 
5 -t 3 n l 

2 St%’ l-I,: = 11 + B (1 + Qk]-’ [i + B s (1 9 qk] (6) 

-?_ [I + 4fJ F vi + 4p (1/g f p)], r1.2 = - 43 k = y 

For small B and fixed values of II,,(O) we shall have 

r,=-5+ $P -+ pa ++ gp+ 0 (S”) 

9 (7) 
ra - r1 = _3p-l - 2 + 0 (P), A = 1 - + W, (0) -+. 0 (PI 

For any fixed values of t, n,,(O) and 13 + 0 from the relation (6) 
with allowance for (7) we obtain the zero order te;ms in the asymptotic 
expansion of the exact solution for small B 

l-I = (I + t)%, nxx = - z/&3 (s) 

which coincide with the solution of the problem in the approximations of 
Euler and Navier-Stokes and do not depend upon II,,(O) 

-r 

+.5 

The solution of the problem 
by the method of Chapman-&skog 
has the form 

n = (1 + #a' 

l-I,= - '/a (5 + 4 (9) 

where r coincides with the 
expansion rl (Formula (7) ); 
in the Navler-Stokes approxi- 
mation 

r E r(l) = -5-44p 

in Barnett approximation 

r E $2) = - 5 + 8/*p - ‘Qp 

35 in the third approximation, 
0 0.4? 0.4 0.6 0.8 p 1 calculated with the help of 

the iterational method of[5], 
Fig. 1 

r 3 ,(a) = r(2) - =ls,B' 

In Fig. 1 the exact values of r, are compared with the approximations 

(rc4) = r@) + a@J/,p') 

Barnett's approximatlon is significantly more accurate than the Navier- 
Stokes approximation, and agrees well with the exact solution even in the 
region of divergence of the Chapman-Wskog method. By the same method as 
in Section 36 of [2], where the shear flow is cosidered, it is easy to show 
that the series for n,, 
P<(VlO---)/6 

obtained by this method converges at least when 
and consequently the corresponding series for r- in terms 

of B converges to rl . 

The approximate solution (9) differs from the exact solution not only 
that 
If AL 

is an approximate value for r1 , but differs also in its structure. 
then L?=O and n,,(O)=-(5+r1)/2. 

(0)' the 
Only for such a value 

of CXX solution by the Chapman-Enskog method have the same structure 
as the exact solution and the small values of @ converges to It. Of course, 
each approximation of this method is applicable only in a finite interval of 
the value of t , since when t - m the approximate values of ll can differ 
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appreciably from the exact values. 

For arbitrary values of n,,(O) the solution by the Chapman-Enskog methi., 
has an asymptotic character, givln 
the solution with respect to 

correctly only the zero order ~eim: I!I: 
8 (B), i s nce even ln the ftist term of tile ix- 

pansion of A 
occurs. 

with respect to @ the ratio n,,(iii 
Tt is necessary to remark that, in contra::t 

to the Chapman-&skog method, in the kinetic theory 
we assume a certain arbitrariness in the initial 
values of 7tl = piJ + pb,) and. the other moments of 
higher order, but the degree OS this arbitrarine:.:; 

2 
is unknown, An essential limitation consist:: in the 
positiveness of the distribution function anci, ccn- 
sequently, of its even moments. 

If, for example, pznr (~)~PZZ(Of=--'/B& (% then, 
taking account of the conditions 7 >O 
and 

f 
T,,’ 0 , we have - 1 < II,,(O)"% 2. 

For the final answer to this question 
it is necessary to find the distribution 
function or the complete spectrum of Its 
moments. 

-1 

0 / I I I( In the Chapman-tiskog method it is 
? 2 t 3 assumed that the fluctuation of the 

a initial values of the moments of the 
distribution function of second and 

.&o/=2 
higher oraer, die out, and after a period of time 
of order several relaxation times the state of the 
gas ceases to depend upon them. This assumption has 
been subject to criticism; it is particularly easy 
to show the falseness of this assumption in the case 
under consideration here. 

Let us consider the case of large t. Discarding 

-2 the terms which die out rapidly with time (this pro- 
cess of 'dying out" 1s illustrated in Fig. 2), from 

Fig. 2 Formulas (3) we obtain 

>iji=O (i #i), Pm = ~~~=-~12&~7 

which coincides with the corresponding results of the Chapman-Enskog method. 
From Formulas (6) we obtain 

I'I IA = (1 + tpi, IIre = - ‘/a (5 Q rll 

Accordingly, for large t , small $ and arbitrary n,,(O) the Chapman- 
Enskog method gives correctly the values of the ratios n/A and fl,, and in- 
correctly the absolute values of p and P,, (with the exclusion of the 
case A = 1 , considered above). 

The conclusions drawn above are valid also in the case of shear flow with 
the exception OS the circumstance that when A = 1 in the solution considered 
here, the results of the calculations in the Barnett approximation are close 
to exact ones in a considerably wider range of values of 0 than in the case 
of shear flow. The relative success of the Chapman-Enskog method in the 
problem of shear Slow in [2] is explained by the fact that in this case those 
terms of the equations of thls method are identically equal to zero, the 
presence of which, as is established in t2] and 153, throw doubt on the COP 
rectness of the Chapman-Enskog method. However, in the case considered here 
these terms are not zero. 

The author expresses his acknowledgement to M-8. Kogan and A.A. Nikol'skii 
for their interest in this paper. 
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